Aloe: A Family of Fine-tuned Open Healthcare LLMs that Achieves State-of-the-Art Results through Model Merging and Prompting Strategies

In medical technology, developing and utilizing large language models (LLMs) are increasingly pivotal. These advanced models can digest and interpret vast quantities of medical texts, offering insights that traditionally require extensive human expertise. The evolution of these technologies holds the potential to lower healthcare costs significantly and expand access to medical knowledge across various demographics.

Read More
QLoRA Efficient Finetuning of Quantized LLMs

QLoRA: Efficient Finetuning of Quantized LLMs

The key innovation behind QLoRA lies in its ability to backpropagate gradients through a frozen, 4-bit quantized pretrained language model into Low Rank Adapters (LoRA). The resulting model family, aptly named Guanaco, surpasses all previously released models on the Vicuna benchmark, achieving an impressive 99.3% of the performance level of ChatGPT. Notably, this feat is accomplished within a mere 24 hours of fine-tuning on a single GPU.

Read More

Google DeepMind Introduces AlphaFold 3: A Revolutionary AI Model that can Predict the Structure and Interactions of All Life’s Molecules with Unprecedented Accuracy

Computational biology has emerged as an indispensable discipline at the intersection of biological research & computer science, primarily focusing on biomolecular structure prediction. The ability to accurately predict these structures has profound implications for understanding cellular functions and developing new medical therapies. Despite the complexity, this field is pivotal for gaining insights into the intricate world of proteins, nucleic acids, and their multifaceted interactions within biological systems.

Read More

Unlock the Power of Your Documents: Introducing Kemon AI, Your AI-Powered Research Assistant

Are you tired of spending hours pouring over documents, searching for specific information, and taking notes? Do you wish you had a reliable and efficient way to extract insights and answers from your PDFs? Look no further than Kemon AI, the revolutionary AI-powered research assistant that uses LLaMA 3 as its language model and Weaviate vector database for its robust RAG pipeline.

Read More
OpenAI

OpenAI’s Residency Program: Bridging Minds for AI Advancement

Artificial intelligence has been transforming the way we live and work, and OpenAI, a renowned AI research and deployment company, is at the forefront of this revolution. They understand that to create AI systems that truly benefit humanity, they need a diverse set of skills and backgrounds reflecting the human experience. To achieve this, OpenAI has launched its Residency Program, offering a unique opportunity for exceptional engineers and researchers from various fields to embark on a six-month journey into the world of AI.

Read More

Alignment Lab AI Releases ‘Buzz Dataset’: The Largest Supervised Fine-Tuning Open-Sourced Dataset

Language models, a subset of artificial intelligence, focus on interpreting and generating human-like text. These models are integral to various applications, ranging from automated chatbots to advanced predictive text and language translation services. The ongoing challenge in this field is enhancing these models’ efficiency and performance, which involves refining their ability to process & understand vast amounts of data while optimizing the computational power required.

Read More

This AI Paper by Snowflake Introduces Arctic-Embed: Enhancing Text Retrieval with Optimized Embedding Models

In the expanding natural language processing domain, text embedding models have become fundamental. These models convert textual information into a numerical format, enabling machines to understand, interpret, and manipulate human language. This technological advancement supports various applications, from search engines to chatbots, enhancing efficiency and effectiveness. The challenge in this field involves enhancing the retrieval accuracy of embedding models without excessively increasing computational costs. Current models need help to balance performance with resource demands, often requiring significant computational power for minimal gains in accuracy.

Read More